Spatial Environmental Economics

Lecture 1: Introduction

Augusto Ospital

LMU Munich

April 23, 2025

- 1 What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

- 1 What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

What is spatial economics?

- Broadly: aims to explain the causes and consequences of economic activity being concentrated across space
 - "Despite spectacular drops in communication and transport costs, distance and location have not disappeared from economic life." (Proost and Thisse, 2019)
- Constituent (?) subfields:
 - Urban economics
 - Regional economics
 - Transportation economics
- Relation to Trade?
 - ▶ Trade studies locations' comparative advantage and production patterns
 - ▶ Trade typically holds factor endowments fixed, while Spatial emphasizes labor mobility

Why do we care about spatial economics?

- 1 Economic outcomes exhibit spatial variation: wages, employment, output
- 2 Many economic mechanisms have a spatial nature or depend on distance
 - ▶ Housing is large part of household consumption basket, school choice
 - ▶ Labor demand & supply: migration, commuting
 - Knowledge/productivity/amenity spillovers
 - Impact of transportation infrastructure
- Many policies are spatially concentrated
 - Opportunity Zones, discretionary tax breaks, Low Emission Zones (LEZs)
 - ► Infrastructure investment
- 4 Political representation is spatial

What is environmental economics?

- The study of the efficient allocation, use, and protection of the world's limited natural resources
- Analysis of problems and policies arising from the fact that ... (Tol, 2022)
 - natural resources are scarce
 - environmental externalities are substantial
 - environmental services are valuable

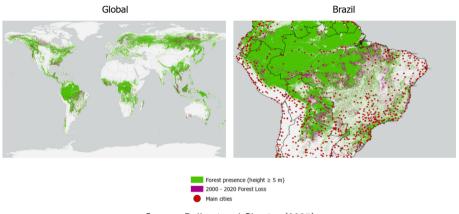
Environmental externalities and services

- An externality is the unintended and uncompensated effect of one economic agent on a third party. E.g.:
 - ▶ Intent: hold bees to make honey
 - Unintended: pollinate flowers
 - Compensation: pollination is not compensated
 - ▶ Third party: the beneficiaries of pollination do not engage in a transaction with the pollinator
 - ▶ If pollination is remunerated, externality is less pronounced; or may disappear if price is right
- Environmental services:
 - ▶ <u>Direct use value</u>: oxygen, water for consumption or production; recreation, tourism, amenity
 - ▶ Indirect use values: regulating services such as pollination of crops by wild insects
 - ▶ Option values: known (or unknown) future uses; e.g. expanding ecotourism, new medicines

Why study environmental and spatial economics jointly?

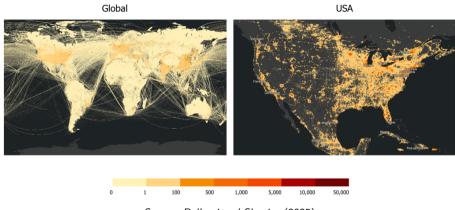
- The rest of this **lecture** outlines an answer to this question:
 - ▶ Examples of spatial settings where the environment matters, and vice versa
 - Discussion of spatial links and policy
- The rest of the **course** delves deeper into some of these topics, taking the opportunity to:
 - ► Teach you some of the key models in spatial and urban economics
 - Cover some of the key ideas and issues in environmental economics
 - ▶ Review applications of these frameworks in spatial-enviro settings

- ① What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

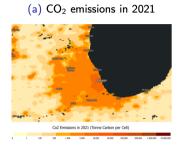

Motivating facts on enviro-spatial links

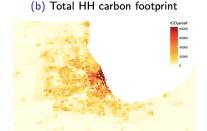
Useful distinction between polluting activity, environmental quality, and social welfare:

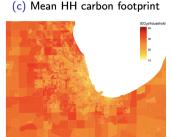
Polluting activity \rightarrow Environmental quality \rightarrow Social welfareManufacturer emitsPM concentrationRisk of asthma increasesparticulate matter (PM)increases nearbyfor nearby residents


- ① What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Spatial variation in forest cover and deforestation

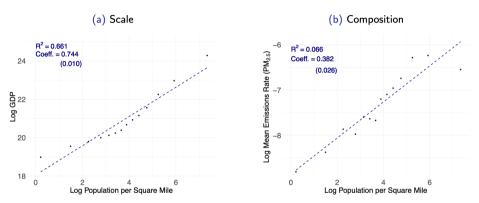

- Source: Balboni and Shapiro (2025)
- Earth's forests are concentrated in a boreal band and a tropical band
- Deforestation in Brazil at the interface of non-forested areas, especially near cities


Spatial variation in CO₂ emissions



- Source: Balboni and Shapiro (2025)
- Higher emissions in regions with greater population density and higher income
- Emission footprints also along major trade routes, such as between US, EU, and China

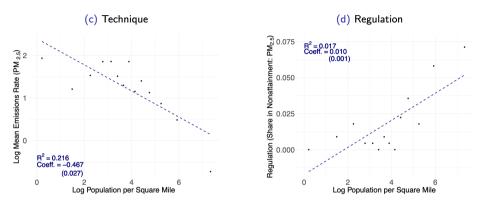
Spatial variation in CO₂ emissions: production vs. consumption


Source: Balboni and Shapiro (2025)

- Aggregate emissions highest near city center where industry and populations are densest (a and b)
- Emissions per household are highest in city outskirts and suburban areas (c)
- Therefore, measuring emissions from consumption or production may alter conclusions

Spatial drivers of emissions: scale, composition, technique

- Literature has separated the determinants of environmental quality into 3 categories (following Grossman and Krueger, 1993; Copeland and Taylor, 1994)
 - 1 The scale of output
 - **2** The **composition** of output across industries (dirtier vs. cleaner industries or goods)
 - 3 The techniques of production within an industry (dirtier vs. cleaner technologies)
- Next: illustrate how 3 categories relate to population density and emissions across US counties
 - X-axis: population per square mile
 - ▶ Y-axis: measures of emissions to capture scale, composition, or technique


Scale and composition of production drive higher pollution in US cities

Notes: Binned scatter plots and linear trends based on 2017 US county observations. Source: Balboni and Shapiro (2025)

- Panel a: y-axis is GDP, measuring the scale of economic activity
- Panel b: y-axis describes the extent that a county is specialized in dirty industries

Denser areas in the US have lower emissions per worker

Notes: Binned scatter plots and linear trends based on 2017 US county observations. Source: Balboni and Shapiro (2025)

- Panel a: y-axis is emissions per worker net of industry composition differences
- Panel b: y-axis indicates whether a county is under stricter air pollution regulation

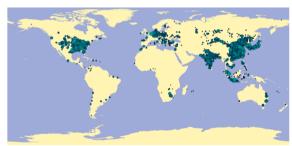
Spatial drivers of emissions in the US: scale, composition, technique

In summary:

More densely populated US counties

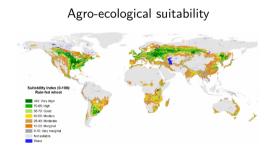
- = more GDP (scale)
- + dirtier industries (composition)
- + cleaner production (technique, thanks partly to regulation)

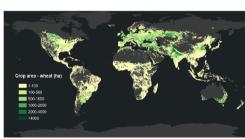
Spatial drivers of emissions: resource endowments


- Natural resource endowments also vary over space
 - ► Can drive both environmental and economic outcomes
 - Can change the total scale of production, industry composition, and factor intensity
- E.g.: water access, forests, fertile soils, mineral deposits, and solar and wind availability
- Within cities, tree canopy cover can moderate extreme temperatures and reduce energy consumption (Han et al., 2024)

Location of natural resources and productive specialization

• Example of coal deposits and coal-fired power plants:


(b) Coal-fired power plants in operation in 2023

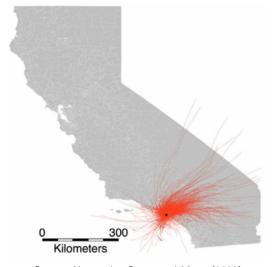

Sources: Suárez-Ruiz et al., 2019, Balboni and Shapiro (2025)

Location of natural resources and productive specialization

• Example of agro-ecological suitability for wheat and wheat cultivation:

Grown area

Source: Balboni and Shapiro (2025)

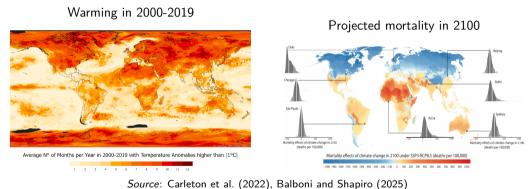

- **1** What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Spatial geophysical forces drive environmental quality

- We just discussed spatial variation in polluting emissions
- But environmental problems can happen in different places that the original emission
 - Pollution transport
 - ▶ Geophysical forces ≠ administrative boundaries
- Recall distinction between polluting activity, environmental quality, social welfare (p. 10)
- Relationships can be complex. For example:

Industrial plant emits chemicals \rightarrow aquatic ecosystem transforms chemicals into other pollutants \rightarrow river transports pollution downstream \rightarrow drinking water treatment plant treats pollution \rightarrow pipes then distribute the water to household faucets

Particle trajectories from an industrial facility in Southern California


Source: Hernandez-Cortes and Meng (2023)

- **1** What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Spatial variation in damage functions drives social welfare

- We discussed spatial variation in pollution emissions and environmental quality
- The damages from environmental quality, and their valuation, also vary over space
- The effects of the environment on the well-being of people and firm profits depend on
 - ► Endowments (e.g. increasing temperature may be worse in areas already hot)
 - Technology (e.g. adaptive investments such as AC)
 - ► Choices (e.g. service sectors allow staff to work indoors)

Spatial variation in climate change and its mortality effects

- Source. Carleton et al. (2022), Daibon and Shapiro (2025)
- Climate change expected to increase temperatures the most in North/South
- But expected to increase mortality most near the equator

- ① What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

- What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy

Agglomeration forces

- Dispersion forces
- Geography and links between regions
- Environmental spatial policy and the role of geography

Agglomeration can benefit the environment

- Pollution control exhibits increasing returns from scale
 - ▶ E.g. in monitoring cost for drinking water systems (Keiser et al., 2023)
- Transport and housing may lead to lower emissions
 - Denser cities have less driving, smaller housing units, and lower associated energy bills (Duranton and Turner, 2018; Glaeser and Kahn, 2010)
- Adaptation infrastructure: local goods with fixed costs
 - ▶ E.g. sea walls, levees, cooling centers, and warning systems for natural disasters
- Reduced sprawl protects wildland
 - ► E.g. some cities have growth boundaries or greenbelts

Agglomeration can increase environmental damages

- Increases the marginal damages of local pollutants
 - A unit of air pollution has greater social cost when emitted in a dense place, because it affects more people
 - ▶ The same unit of pollution emitted in a desert affects virtually no-one
 - Logic does not apply to global pollutants (like greenhouse gases), where the location of pollution is irrelevant
- Increases the vulnerability to natural disasters
 - When one hits a dense area, it affects more people
 - Moreover, fires spread between homes (Baylis and Boomhower, 2021)

Environmental goods can also drive agglomeration

- Spatial clustering of natural resources can lead to agglomeration spillovers
 - ▶ As discussed, concentrated resources attract industries using the resource as input
 - ▶ But other industries or firms downstream in the value chain may concentrate there too
 - And benefit from agglomeration spillovers
- Environmental amenities can also drive urban development patterns
 - ▶ Coastlines and hills anchor neighborhoods to high incomes (Lee and Lin, 2018)

- What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Environmental goods can drive dispersion

- Negative externalities from production, transport, sewage (Cutler and Miller, 2005)
- Challenging to provide good municipal environmental services in dense city centers
 - ► E.g. rat infestation in New York City
 - ▶ Informal housing in the dense centers of many megacities today still lacks piped water, sewage conveyance, or trash collection
- Urban heat islands
- Natural resources can constrain urban development
 - ▶ Limited ability to develop sloped and wetland areas (Saiz, 2010)

- **1** What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Spatial links affect environmental externalities

- Spatial links: flows of goods, people, and ideas between regions, and frictions to these
- Transport can be good and bad for the environment
 - Generates emissions (as discussed)
 - ▶ Market access aids resource extraction (e.g. deforestation and roads, Araujo et al., 2023)
 - Commuting generates noise, pollution
 - But, commuting also separates residential from dirty industrial areas
- Flow of ideas can affect the environment
 - Spread of green technology such as renewable energy, solar
 - ▶ Innovation in agriculture re-directed to crops with increasing exposure to rising temperatures

Environmental goods and policies affect spatial links

Many environmental policies regulate the transportation sector

- Exhaust, energy efficiency, electrification, etc standards
- Spatially-targeted congestion charges

Natural disasters drive migration

- ▶ Within-country: e.g. migration to urban areas in aftermath of Typhoon Ketsana in Vietnam (Gröger and Zylberberg, 2016)
- Across countries: e.g. weather variations in source countries translates into asylum applications to EU (Missirian and Schlenker, 2017)

Future climate change drives adaptive adjustments

- Affects spatial transmission of climate change costs
- Migration frictions important for estimating climate damages

Roadmap

- **1** What is spatial economics? And environmental economics? Why together?
- 2 Motivating facts on enviro-spatial links
 - Spatial forces drive polluting activity
 - Spatial geophysical forces drive environmental quality
 - Spatial variation in damage functions drives social welfare
- 3 Spatial links in environmental analysis and policy
 - Agglomeration forces
 - Dispersion forces
 - Geography and links between regions
 - Environmental spatial policy and the role of geography

Enviro-spatial policy: (1) place-based policies

- Many enviro policies regulate specific polluted locations
 - ▶ US Clean Air Act: industrial location, employment, capital, output, productivity, wages, ...
 - China's 2013 pollution monitoring program
 - Market-based instruments and tradable performance standards
- Policies targeting spillovers across locations are an open topic for research and policy
 - ▶ E.g. gasoline taxes accounting for spatial differences in the externalities from automobile use

Enviro-spatial policy: (2) environmental federalism

- Different levels of government often regulate the same environmental problem
 - A related issue to the spillovers discussed before
- Theory of fiscal federalism: a given environmental problem may have an optimal level of government to regulate it, depending on the structure of the externality
- E.g. wildland firefighting in western US (Baylis and Boomhower, 2023)
 - ▶ Local municipal governments permit home building next to federal forests
 - ▶ Federal government is responsible for fighting fires that start in federal forests

Enviro-spatial policy: (3) leakage

- Environmental regulation can cause "leakage" of dirty activities to unregulated regions
- Policy-driven carbon leakage
 - Offshoring emissions-intensive production
 - ▶ Policy debates, e.g., EU Carbon Border Adjustment Mechanism
- Natural resource exploitation
 - ▶ E.g. PES (payments for environmental services) may just shift the location of deforestation
- Adaptive infrastructure
 - ► E.g. levees may increase flood risk downstream

Enviro-spatial policy: (4) land use

Zoning, development, land use restrictions

- Affected by and affect the environment
- ▶ Affect spatial patterns of density, pollution, development in wildland-urban interface
- ► Concession rights in tropical forest areas affect fire-setting, forest loss (Balboni et al., 2023)

Enviro-spatial policy: (5) insurance

- **Spatial moral hazard** occurs when agents do not face the full consequences of locating in environmentally risky areas
- Regional insurance policies, as well as disaster aid, can effectively subsidize development in areas prone to natural hazards
 - Federally-managed US National Flood Insurance Program, development in flood-prone areas
 - "Last resort" state insurance policies in the US for wildfires, hurricanes

References I

- ARAUJO, R., J. ASSUNÇÃO, AND A. BRAGANÇA (2023): "The Effects of Transportation Infrastructure on Deforestation in the Amazon: A General Equilibrium Approach," *Policy Research Working Papers*.
- Balboni, C. A., and J. S. Shapiro (2025): "Spatial Environmental Economics," *National Bureau of Economic Research Working Paper Series*, No. 33377, 10.3386/w33377.
- Balboni, C., A. Berman, R. Burgess, and B. A. Olken (2023): "The Economics of Tropical Deforestation," 10.1146/annurev-economics-090622-024705.
- Baylis, P., and J. Boomhower (2023): "The Economic Incidence of Wildfire Suppression in the United States," American Economic Journal: Applied Economics, 15, 10.1257/app.20200662.
- Baylis, P. W., and J. Boomhower (2021): "Mandated vs. Voluntary Adaptation to Natural Disasters: The Case of U.S. Wildfires," *National Bureau of Economic Research Working Paper Series*, No. 29621, 10.3386/w29621.
- CARLETON, T., A. JINA, M. DELGADO ET AL. (2022): "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits*," *The Quarterly Journal of Economics*, 137, 2037–2105, 10.1093/qje/qjac020.

References II

- COPELAND, B. R., AND M. S. TAYLOR (1994): "North-South Trade and the Environment," *The Quarterly Journal of Economics*, 109, 755–787, 10.2307/2118421.
- CUTLER, D., AND G. MILLER (2005): "The role of public health improvements in health advances: The twentieth-century United States," *Demography*, 42, 1-22, https://EconPapers.repec.org/RePEc:spr:demogr:v:42:y:2005:i:1:p:1-22.
- DURANTON, G., AND M. A. TURNER (2018): "Urban form and driving: Evidence from US cities," *Journal of Urban Economics*, 108, 10.1016/j.jue.2018.10.003.
- GLAESER, E. L., AND M. E. KAHN (2010): "The greenness of cities: Carbon dioxide emissions and urban development," *Journal of Urban Economics*, 67, 404–418, https://doi.org/10.1016/j.jue.2009.11.006.
- GROSSMAN, G. M., AND A. B. KRUEGER (1993): Environmental impacts of a north American free trade agreement: MIT Press.
- GRÖGER, A., AND Y. ZYLBERBERG (2016): "Internal labor migration as a shock coping strategy: Evidence from a typhoon," *American Economic Journal: Applied Economics*, 8, 10.1257/app.20140362.

References III

- HAN, L., S. HEBLICH, C. TIMMINS, AND Y. ZYLBERBERG (2024): "Cool cities: The value of urban trees," *National Bureau of Economic Research Working Paper Series*, No. 32063, 10.3386/w32063.
- HERNANDEZ-CORTES, D., AND K. C. MENG (2023): "Do environmental markets cause environmental injustice? Evidence from California's carbon market," *Journal of Public Economics*, 217, 10.1016/j.jpubeco.2022.104786.
- KEISER, D. A., D. MOLITOR, AND J. S. SHAPIRO (2023): "Water works: Causes and consequences of safe drinking water in America."
- LEE, S., AND J. LIN (2018): "Natural Amenities, Neighbourhood Dynamics, and Persistence in the Spatial Distribution of Income," *The Review of Economic Studies*, 85, 663–694, 10.1093/restud/rdx018.
- MISSIRIAN, A., AND W. SCHLENKER (2017): "Asylum applications respond to temperature fluctuations," *Science*, 358, 10.1126/science.aao0432.
- PROOST, S., AND J.-F. THISSE (2019): "What Can Be Learned from Spatial Economics?" *Journal of Economic Literature*, 57, 575–643, 10.1257/jel.20181414.
- SAIZ, A. (2010): "The geographic determinants of housing supply," Quarterly Journal of Economics, 125, 10.1162/qjec.2010.125.3.1253.

References IV

Suárez-Ruiz, I., M. A. Diez, and F. Rubiera (2019): 1 - Coal, 1–30: Woodhead Publishing, https://doi.org/10.1016/B978-0-08-102201-6.00001-7.

Tol., R. S. (2022): Environmental Economics: Lecture notes: Tol Tales Publishing, https://buymeacoffee.com/richardtol/e/338460.