Spatial Environmental Economics Lecture 5: Elements of Spatial Models

Augusto Ospital

LMU Munich

May 21, 2025

2 Spatial Links: Transportation

Spatial Forces

1 Locations and the Topography of Space

2 Spatial Links: Transportation

Spatial Forces

Locations

- A location is the geographic coordinates where economic activities take place
 - This could be a point in a map or an area
 - ▶ Definition will depend on the specific question(s) we want the model to answer
 - Definition can also depend on the available data
- The "topography" is the set of features of locations and their connections in space:
 - Productivities, amenities, spatial links
- More formally:
 - ▶ Define space S. Locations $i \in S$
 - ▶ Productivities, amenities, spatial links are functions over locations $i \in S$

Productivity of locations

- Productivity of a location is the units of output per unit of associated labor used
 - ▶ It reveals the productive capacity of a location
 - ▶ It depends on the access to natural resources, climate, etc.
 - When there are more than one factors we refer to total factor productivity: the units of output for a unit of combined inputs
- Formally:
 - Denote the labor used in location i by Li
 - ▶ Then **productivity** A_i is the units of output per unit of labor L_i
 - ▶ With a simple production function, output $Y_i = A_i L_i$

Amenity of locations

- Amenity of a location is the intrinsic utility value of residing there
 - ▶ It depends on access to entertainment, playgrounds, climate, water, etc
 - ▶ Diamond (2016) suggests six broad categories relevant for amenities:
 - ★ retail, transportation, crime, environmental, schooling, and job quality amenities
 - ★ e.g spending on parks per capita (positive), pollution (negative)
- Formally:
 - Denote the (indirect) utility of a location by W_i
 - ightharpoonup We can consider the **amenity**, u_i , such that $W_i = W_i\left(w_i, P_i, u_i\right)$
 - \triangleright w_i is the wage, P_i is the price of consumption at the location

Spatial links between locations

- Spatial links are the geographical connections between locations
 - ▶ They describe social links, economic links, and trade potential
 - ► Examples include trade, commuting, knowledge spillovers
- Spatial links across locations are determined by
 - ► The transportation and communication infrastructure
 - ▶ The means of transportation and communication

Spatial links in the model

• We represent spatial links with a matrix (or a function in continuous space) with elements

$$\{\tau_{ij}\}_{i,j\in\mathcal{S}}$$

- Each element of the matrix determines if two locations are directly linked
- The value (or the inverse) of each element represents the intensity of the link
 - ▶ E.g. *i* Munich, *j* Stuttgart, *j'* is Berlin: it is cheaper and faster to take a train to Stuttgart than Berlin so that $\tau_{ij} < \tau_{ij'}$ where τ_{ij} represents the cost of traveling from *i* to *j*
 - We denote the cost of using each segment of the network as \bar{t}_{ij} , i.e. each τ_{ij} is a function of $\{\bar{t}_{ij}\}_{i,j\in S}$

1 Locations and the Topography of Space

2 Spatial Links: Transportation

Spatial Forces

Transportation infrastructure

- Transportation infrastructure is the network of installations that allows the transfers of goods through various means
 - Includes roads, rail tracks, airports, sea ports etc
 - It has significantly varied over time
 - Transportation revolutions correlate with significant economic and social progress
 - ► E.g. Persian empire, Ancient Athens/Hellenistic Period, Modern Roman Republic/Empire, Discovery of the New World, Industrial Revolution

Telecommunication infrastructure

- Telecommunication infrastructure is the network of installations that allows the transfer of information through various means
- Includes information of any nature (signals, messages, pictures, voice etc) and by any means (wire, radio, optical, electromagnetic)

Transportation technology

- ullet The transportation technology also determines the intensity/quality of a link (and thus $ar{t}_{ij})$
- E.g. using donkey vs modern car vs plane
- Determines the speed or the type of objects that can be carried and as a result the overall cost, τ_{ij}

Locations and the Topography of Space

2 Spatial Links: Transportation

Spatial Forces

Spatial forces

- We have discussed the important elements of spatial economics
 - Productivities, amenities, transport costs
- Next: how to model some of the most significant economic forces that affect those
- We call these **spatial forces**:
 - Agglomeration
 - 2 Amenity spillovers
 - Transport congestion

Agglomeration

- Agglomeration economies or agglomeration spillovers are the production increase as a result of clustering of economic activities
- Related to the idea that small scale production is inefficient because of fixed costs
- Externalities between firms in the same industry (Marshall, 1890) because of:
 - Labor market pulling
 - Knowledge spillovers
 - Proximity to inputs
- Externalities between firms in different industries (Jacobs)
 - ► E.g. R&D activity spillovers between disparate industries

Agglomeration in our model

• Population/employment locally or elsewhere affects the productivity of a location i:

$$A_{i} = \bar{A}_{i} f^{A} \left(\left\{ L_{j} \right\}_{j \in \mathcal{S}} \right)$$

- $ightharpoonup \bar{A}_i > 0$
- $ightharpoonup f^A$ is a function
- ▶ If $\partial A_i/\partial L_i > 0$ we say that there are *local* productivity spillovers
- ▶ If $\partial A_i/\partial L_j > 0$ for $i \neq j$ we say that there are *spatial* productivity spillovers
- Simplest example:

$$A_i = \bar{A}_i L_i^{\alpha}$$

with $\alpha \geq 0$

Amenity spillovers

- Amenity spillovers or externalities occur if amenities are affected as a result of clustering
 of economic activities
- Variety of reasons underlying these spillovers, e.g.
 - Rental or housing market spillovers more people wanting to live somewhere bid up prices
 - ► Air pollution from traffic, noise pollution from nightlife
 - Consumption amenities such as restaurants need enough customers to cover fixed costs
 - Local public services such as schools or police force

Amenity spillovers in our model

Population/employment locally or elsewhere affects the amenity of a location i:

$$u_i = \bar{u}_i f^u \left(\{L_j\}_{j \in S} \right)$$

- $\bar{u}_i > 0$
- $ightharpoonup f^u$ is a function
- ▶ If $\partial u_i/\partial L_i \neq 0$ we say that there are *local* amenity spillovers
- ▶ If $\partial u_i/\partial L_j \neq 0$ for $i \neq j$ we say that there are *spatial* amenity spillovers
- Simplest example:

$$u_i = \bar{u}_i L_i^{-\beta}$$

with $\beta \neq 0$ (typically $\beta > 0$, congestion or dispersion force)

Transport congestion

- Transport congestion. Congestion of the transportation system happens if the flows of goods or people or other endogenous variables affect the intensity/cost of the link
- In our model, we say that τ_{ii} is a function of trade between two locations
 - lacktriangle As well as a function of the exogenous component $ar{t}_{ij}$, as before

Locations and the Topography of Space

2 Spatial Links: Transportation

Spatial Forces

Basic elements of spatial models

- Locations: $i \in S$
- Topography: A_i , u_i , τ_{ij}
 - ightharpoonup Geography (economic fundamentals, exogenous): $ar{A}_i$, $ar{u}_i$, $ar{t}_{ij}$
 - ▶ Spatial forces: agglomeration (α), amenity spillovers (β), transportation congestion
- Endogenous variables: L_i , w_i , P_i

References I

ARKOLAKIS, C. (2024): The Economics of Space: Lectures: (ECON 433b) Yale University, https://theeconomicsofspace.com/.

DIAMOND, R. (2016): "The determinants and welfare implications of US Workers' diverging location choices by skill: 1980-2000," 3, 10.1257/aer.20131706.

MARSHALL, A. (1890): Principles of Economics: Macmillan.